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AIIstract-The finite strain behaviour of thin-walled circular cylinders fixed at their ends and
subjected to uniform internal pressure is examined. General transversely isotropic inelastic
properties are assumed, and both time-independent plastic (elastoplastic) and rate-sensitive
inelastic (viscoplastic) material response are considered. Flow theory and deformation theory-type
constitutive laws are employed. The influence of constitutive properties and tube geometry on
maximum pressure and localized necking instabilities is· determined through finite element
computations for selected types of anisotropy. Simple relations are developed for the pressure­
deformation response and instability of general transversely isotropic materials, and these are
shown to be very accurate for long tubes. The accuracy of elementary formulae commonly used
in experimental investigations of constitutive relations is also discussed.

I. INTRODUCTION

Experimental investigations on material constitutive relationships are often carried out by
subjecting thin-walled cylinders to various combinations of axial load and lateral pressure.
In the treatment of test data it is commonly assumed that the expansion and elongation of
the tube are uniform, so that simple expressions relating stress and strain components to the
applied loads and displacements can be employed. One of the objectives of the present study
is to examine some of the limitations of this approximation.

Instabilities in ductile cylindrical tubes are often associated with the state where the
pressure or load reaches a maximum. Under load-controlled conditions the maximum
pressure state does indeed lead to failure. However, if the displacements are controlled
rather than the loads, failure generally occurs under decreasing pressure and at deformation
levels which can exceed considerably the deformations at maximum pressure. For ductile
materials, the mode of failure usually involves the development of a localized neck in some
region of the tube. This neck eventually leads to fracture. In this investigation, the influence
of material properties on maximum-pressure and localized-necking instabilities is deter­
mined.

The inelastic behaviour ofpressurized cylinders has been the subject ofmany theoretical
and experimental studies (see, e.g., Refs. [1-5]). An analytical investigation of the finite
inelastic deformation of fixed-end circular tubes subject to internal pressure is carried out
in this paper. Various constitutive laws describing anisotropic inelastic behaviour and either
time-independent or strain-rate sensitive material response are incorporated in the analysis.
The rate-dependent constitutive relations employed are viscoplastic generalizations of the
well-known flow theory and deformation theory laws of time-independent plasticity. To
characterize plastic anisotropy, we use the yield functions which have been proposed by
Hill[6, 7], Bassani[8] and Budiansky[9] for transversely isotropic materials. The effects of
the various constitutive parameters on the overall deformation behaviour of the tube is
studied. The influence of cylinder geometry is also examined.

Numerical results are first obtained by finite element solutions based on Hill's extremum
principle[IO] for time-independent behaviour and a modified form of this principle[I I] for
viscoplastic materials. An approximate analysis is also proposed for long tubes. This
analysis, which is based on the assumptiolt' of a uniform tube expansion, provides simple
expressions for the pressure-deformation response as well as for the pressures and defor­
mations at the maximum-pressure and localized-necking states. The approximate analysis
is shown to agree extremely well with the finite element results. The simple relations given
here are for general transversely isotropic materials and should therefore be quite useful for
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assessing the influence of strain-hardening, strain-rate sensitivity and anisotropy on the
large strain inelastic behaviour of cylindrical tubes.

2. BASIC FIELD EQUATIONS

A Lagrangian fonnulation of the basic field equations is adopted [I 2]. The initial
undefonned configuration of the body, with volume V and surface S, is used as a reference.
Material points are identified by convected coordinates Xi in this reference state. The
covariant components of the metric tensors of the undefonned and defonned configurations
are gij and Gij, respectively. We denote the Lagrangian strain tensor by

11 k.... = - (G - g ..) = - (u. + u + U ,Uk .)
'Ilj 2 lj IJ 2 I.J N .I.J

(2.1 )

where U; are the components of the displacement vector on the reference base vectors gi and
a comma represents covariant differentiation with respect to the undefonned. metric. The
Lagrangian strain-rate components are

(2.2)

where a superposed dot denotes differentiation with respect to time.
Another strain measure employed in this analysis is the logarithmic strain tensor which,

by definition, is coaxial with the Lagrangian strain ellipsoid and has principal values f. i • The
f.i are related to the principal components of flij as follows

1
f. = In A. = -In (2... + 1)

I I 2 '/I
(2.3)

where Ai are the principal stretches. For incompressible defonnations, the constraint
A1A2A3 = I implies the simple condition f. 1 + f.2 + f.3 = O.

We first consider time-independent materials with constitutive laws of the fonn

(2.4)

v··
where L ijkl denotes the tensor of instantaneous moduli and r:

u
are the Jaumann rates of the

Kirchhoff stress tensor t. The contravariant components r:ij are defined with respect to the
defonned base vectors G; and are related to the Cauchy stress components (iij by

(2.5)

where Po and p are the densities in the initial and current states, respectively. The tensor L
is assumed to have the symmetry properties (i +---+j, k +---+ I, ij +--;-+ kl) required for the

v··
existence of potential functions for r:

u
• That is, the constitutive law (2.4) car. alternatively

be expressed as follows

with

Vij au
r: = a~ij

(2.6)

(2.7)

Hill's extremum principle[lO] for rate-independent elastoplastic solids states that the
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incremental equilibrium behaviour of the body is governed by the following variational
equation

with

The admissible velocity fields here are assumed to satisfy the prescribed kinematic boundary
conditions. In (2.8) Sp represents the part of the surface on which the nominal traction rates
t are prescribed and 'P(u) is the potential function for the t such that

(2.9)

For a fluid pressure loading p applied to a surface element dS with unit outward normal
n =ni,; in the initial reference state, we have(l3]

where

.. I ..._
a. y = -£pq'n (lJ '+ u' )(lJJ + uJ)2 ' P ,p q .q'

(2.10)

(2.11)

In (2.11), f.ijk is the alternating tensor and lJ/ is the Kronecker delta.
Strain-rate dependent behaviour is represented by an elastic-viscoplastic constitutive

law. The strain-rate is decomposed as follows

(2.12)

v·
where ~ ij is the instantaneous part or that which is a function of the stress rates i, and

~;; denotes the part which does not depend explicitly on the rates ~!i. Hill's functional
v--

(2.8) can be modified for viscoplastic behaviour by assuming the stress-rates tV to be
derivable from a potential function of the instantaneous strain-rates ~ij = ~ij - ~;; [II]. That
is,

oU'

where

U'( ") I Li;kl'(' ''')(' ''')11 =2 11ij-1fij 11k/-11k/

and L' are the instantaneous moduli in the relation

v--
V _ LiJkl'(' _ ''')

t - 11ii 11 ii •

(2.13)

(2.14)

(2.15)

In Hill's functional we now replace U(~) by U'(~'). In applying this modified variational
principle we take lJ~;; = 0 since the components ~;; do not depend explicitly on stress rates.

3. CONSTITUTIVE RELAnONS

Incompressible materials with transversely isotropic inelastic properties are considered,
with the thickness direction of a tube element being the axis of transverse isotropy. Since
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the elastic response is expected to have a negligible influence on the large deformation
behaviour of the tube, elastic anisotropy will be neglected.

For time-independent material response the total strain-rate is decomposed as follows

(3.1)

where i/ is the elastic part and i.t denotes the plastic part. The elastic strain-rates are given
by

(3.2)

Here E is the elastic modulus and aj are the principal Cauchy stress-rates. Because of
incompressibility the aj are equal to the principal Kirchhoff stress-rates ri. Since our
analysis will be based on the usual assumptions. of membrane theory we consider plane
stress conditions with the stress in the thickness direction (J3 = O.

A general transversly isotropic yield function recently proposed by Budiansky[9) is used
to derive the plastic strain-rates. Other yield criteria due to Bassani[8} and Hi1l[6, 7] are
special cases of Budiansky's yield function. The following parametric form is proposed by
Budiansky

(3.3)

where, with g(O) = g(± n/2) = I, (Js and (Jb represent the current yield stresses in pure shear
and equibiaxial tension, respectively. The equivalent uniaxial stress (Ju is given by

(Ju = 2(Jbg(¢u) cos ¢u with ¢u = tan -1 (::)

According to flow theory, the plastic strain-rates are as follows

O(J
U=_uf.P i= 12

I O(Ji U ,

(3.4)

(3.5)

where i/ is the effective strain-rate. The following relationship between i/ and au is
assumed

. (I I).£/ = E, - E (Ju (3.6)

where the tangent modulus value E,(aJ is obtained from the uniaxial true stress-natural
strain curve at the current stress level (Ju. The normality rule (3.5) together with the plastic
work postulate dWP = (IN = (Ji/ gives[9)

i 1
P = ;;2[-(~) (g cos ¢ )' + (~) (g sin ¢ )']

il = ;;2[(~) (g cos ¢ )' + (~) (g sin ¢ )']

i{ = - (i{ + il)

(3.7)
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where X = ublu., Y = ublus and a prime designates differentiation with respect to cf>.
Isotropic hardening is implied whenever the stress ratios X and Yare taken to be constant.

The finite-strain deformation theory equations corresponding to (3.5) are

(3.8)

where the derivatives au.laui are as identified by (3.5) and (3.7). That is, we simply replace
if, i/ in (3.7) by their total (logarithmic) values if, £/ to obtain the deformation theory
relations. Now the effective plastic strain £/ is related to u. as follows

£ p = (~-~) u
• Es E •

(3.9)

where the secant modulus Es(u.) is determined from the true stress-natural strain curve
in simple tension.

The anisotropic yield function proposed by Bassani [8] is obtained with the following
choice for g(cf»

(g sin cf> )m + (g cos cf> t = I

An alternative form for (3.10) is

(3.10)

(3.11 )

in which the parameter R represents the ratio i1li{ for uniaxial tension in the I-direction.
Bassani's yield function (3.11) reduces to Hill's recent yield criterion[7] when n = m and
to Hill's original function when n = m = 2. The choice n = m = 2 and R = I in (3.11)
implies isotropic behaviour.

A uniaxial stress-strain curve of the form

u = {E£. for
• K£/ for

(3.12)

is assumed in the computations for time-independent response. Here K is a constant, uy
is the yield stress and N is the strain-hardening exponent. As the ratio ElK becomes large,
(3.12) approaches rigid-plastic behaviour.

An elastic-viscoplastic generalization of the above laws is employed to model
strain-rate sensitive material behaviour. The strain-rates are now comprised of an elastic
part iie, again given by (3.2), plus a viscoplastic part i;"p, i.e.

(3.13)

By analogy with the flow theory relations (3-5) we take

(3.14)

where i:P is the effective viscoplastic strain-rate. The analogous viscoplastic "deformation
theory" relations obtained by differentiating (3.8) are

(3.15)

Strain-rate sensitivity is modelled through the uniaxial stress-strain-strain rate relation,
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which is assumed to be of the foml

(3.16)

In the decomposition (2.12) the time-dependent components become

(3.17)

in both the flow theory and deformation theory versions. The instantaneous components
are i; = it with flow theory, whereas deformation theory gives

(3.18)

As mentioned in [14, 15], the above rate-dependent deformation theory does not in general
describe path-independent stress-strain behaviour. We shall, however, continue to refer to
(3.15) as rate-sensitive "deformation theory" equations because of their connection with
the path-independent relations (3.8) of time-independent deformation theory.

The function '§«(Ju, f.:'J is obtained using the following stress-strain-strain rate curve
suggested by Wang and Wenner[16J

(3.19)

Here f.o is a constant, " is the strain-rate sensitivity index and i R represents a reference
strain-rate. When" = 0 (3.19) describes time-independent plastic response.

4. GOVERNING RELATIONS FOR CIRCULAR TUBE

The general formulation of the previous sections will now be specialized to the problem
of an incompressible axisymmetric circular tube fixed at its ends and subjected to a uniform
internal pressure p (Fig. I). The length, radius and thickness of the cylinder are 2/0 , '0 and
ho initially and 210, rand h in the deformed state. We shall limit attention to thin-walled
cylinders (rolho, lo/ba'i:> I) and adopt the usual assumptions of membrane theory.

A cylindrical polar coordinate system is used as a reference with Xl == Z, x 2 == (J and
x 3 ==, (Fig. I). The undeformed metric tensor has components

(4.1)

Because of symmetry and the membrane theory approximations, the mid-surface displace­
ment components become

uz=uz=u(z), uo=uo=O, u,=u'=w(z). (4.2)

From (2.1) and (2.3) we obtain the following for the logarithmic strain components

f.z = In Az = In {[(l + u.zf + w~z]1I2}

€tl = In Ao = In (1 + ~)

f.h = In Ah = In (:J
(4.3)
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Fig. I. Fixed-end circular tube under internal pressure.

where a comma now denotes differentiation with respect to z. Because of incompressibility
£h = - (£z + £e) and Ah = (AzAe) - I. The deformed metric has the following components

1G - _,1.2
zz - GIZ - z' (4.4)

The strain-rate components corresponding to (4.3) are i.z = Az/A" etc. They are related to
the Lagrangian strain-rates (2.2) as follows

(4.5)

The nominal traction components for the configuration-dependent pressure loading are
obtained using (2.10) and (2.11). We get

Fz= pz = - p(1+~) woz

Fe=p9 = 0

F, = F' = p(1+ ~)( 1+ u.J
Applying (2.9) gives the following for the traction-rate potential 'I'

(4.6)

tP = [ - p(1+~) woz - PWoz] Ii + {p( 1+~)(l +u) +p[~ u,z +~(l + U,z)~]} W. (4.7)

Because of symmetry and incompressibility the only non-zero membrane stresses are
t ZZ = UZZ(z) and tOO = u OO(z). They are related to the principal Cauchy stresses as follows

(4.8)

For time-independent material behaviour, the constitutive laws presented in the previous
section take the form

(4.9)

Expressions for the instantaneous compliances M according to flow theory (3.5) and
deformation theory (3.8) are given in the Appendix. Equations (4.9) can be inverted to give



716 E. CHATER and K. W. NEALE

(4.10)

where the instantaneous moduli L = M - I.

The constitutive relations for strain-rate dependent behaviour can be expressed as
follows

(4.11 )

where i;, i; are as given by (3.17). Inverting (4.11) gives

(4.12)

with L' = (M') - 1. Expressions for the M' as determined from the rate-dependent flow
theory and deformation theory laws of the previous sections are given in the Appendix.

In view of the above relations the functional (2.8) for time-independent behaviour
becomes

(4.13)

with

(4.14)

The corresponding fun(tional for rate-sensitive behaviour is obtained by replacing V(E)
in (4.13) by

(4. I5)

For an applied pressure increment jJ the velocity fields are determined by the variational
equation

f>J(u, w) = o. (4.16)

Here the velocity fields are constrained to satisfy the following boundary conditions

u(O) = w.Z<O) = 0
(4.17)

As mentioned earlier, the components i;, i efor rate-dependent response are assumed
to be expressed in terms of the current state of stress and deformation through (3.17).
Consequently we take &; = &; = 0 when applying (4.16). Finite element solutions for
both time-independent and rate-dependent behaviour are developed using the above
variational principles.
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5. APPROXIMATE ANALYSIS FOR LONG TUBES

Approximate formulae for long tubes (/o/ro~ I) can be obtained by neglecting end
conditions and assuming a uniform expansion w = Wo of the cylinder under plane strain
conditions «(z = u = 0). As a result

and

(0 = - (h = In ( I + ;:)

pro ( wo)2
(10=- 1+- .

ho '0

(5.1)

(5.2)

Since proportional loading is implied here, the predictions of flow theory and deformation
theory of plasticity are identical.

We first consider time-independent behaviour and introduce the following (constant)
stress ratios

(5.3)

If elastic effects are neglected oc and fJ can be determined for a given yield function g(q,) by
solving (3.3) together with the condition i l

P = 0 in (3.7a). With Hill's recent criterion (n = m)
the following explicit expressions are obtained for the stress ratios

_y-I _ I/(w-I) fJ-[ 2(I+R) JIIW
oc - Y+ l' y - (I + 2R) , - (l + oct +(l + 2R)(1 _oc)W . (5.4)

For a power-law hardening law of the form (1u = K(/, the pressure-expansion curve (for
any transversely isotropic material) becomes

(5.5)

At the maximum pressure p. we have

* N(0 =-
2

w* (N)-2..=exp - -1
ro 2

p*, (J!\N
K~=fJN+l 2) exp(-N).

(5.6)

Localization, as determined from a necking-band bifurcation analysis (see [15]), occurs
when

WO(I)
-=exp(N)-l

'0

(I)

PK~o = fJN+I(N)N exp (- 2N).

(5.7)
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The above relations indicate that localized necking occurs at expansion levels 1110(/) which are
greaterthan those (111:) at the maximum pressure. Furthermore, anisotropy has no influence
on the deformation values 111:, 1110(1) at instability. Anisotropy does, however, affect the
pressure values pt, pO(I) at the instability through the parameter p.

For strain-rate sensitive response we again neglect elastic effects and use the uniaxial law
(3.19b) with £0 = O. The pressure-expansion relation becomes

which reduces to the rate-independent result (5.5) when Ie = 0 or when the applied expansion
rate Wo approaches zero. For cases where the expansion strain-rate £0 is prescribed to be
constant, the maximum pressure occurs at the following state

(5.9)

which, for small values of Ie, is not too different from the rate-independent result (5.6). As
discussed in [14], localized-necking bifurcations are excluded here since the material behav­
iour is strain-rate dependent.

The accuracy of the proposed simplified relations will be examined in the next section
where we compare some finite element results to those obtained with the above analysis.

6. NUMERICAL RESULTS AND DISCUSSION

The numerical analysis of the. fixed-end tube is carried out by incorporating a particular
finite element scheme[17] in the variational equation (4.16). With this method quadratic
shape functions are employed for the velocity fields u(z), w(z) within each element.
Furthermore, continuity of the gradients Ii.z and w.z is imposed at the element boundaries by
means of the Lagrange multiplier technique. Simpson's quadrature formula is used to
compute the integrals in (4.13). A detailed description of the finite element technique is given
in [17].

For rate-independent response, the pressure-expansion behaviour of the tube is obtained
from a straightforward incremental solution of the finite element equations. To avoid
numerical difficulties near the maximum pressure, the displacement increments t1w(O) :.;Llwo
were prescribed (rather than pressure increments Llp) and the corresponding pressure,
displacement, strain and stress increments throughout the tube were computed. Between 100
and 150 increments were used to reach the maximum pressure state.

For strain-rate sensitive behaviour, an explicit time integration of the finite element
equations was performed. A constant expansion rate w(O):.; Wo was prescribed and the
corresponding pressure, displacement and stress increments for each time-increment !it were
computed. To assure convergent and numerically stable solutions, the time-steps !1t were
chosen in accordance with the convergence criterion developed in [11].

If we initially assume Uz = Un = u = w = 0 throughout the tube the solution to (4.16) for
the first increment becomes Ii = w= O. Consequently, to start the computational procedure
a uniform axial stress U z = So, with So very small, was initially prescribed. We also considered
initial conditions where small initial deflections of the tube were prescribed. Both types of
initial condition led to essentially identical results provided that the initial stress or displace­
ment values remained sufficiently small.

Numerical results for the pressurized tube are given in Figs. 1-4 and in Tables 1-4. A
non-dimensional pressure

_ pro
p=-

Kilo
(6.1)

is introduced because, in terms of this quantity, the governing equations. are independent of
the initial radius-to-thickness ratio ro/ho of the tube.
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Fig. 2. Dependence of maximum pressure p* and corresponding detlection w: on diameter-to­
length ratio of tube (time-independent behaviour).

pr*
..::.:..2..
Klla

1.0

0.8

0.6

0.4

0.2

"" R·3.0

--- Rol.O
- R o O.5

nom

Fig. 3. Dependence of maximum pressure p* on anisotropic parameters (time-independent
behaviour).

nie material constants assumed in the calculations were N == 0.21 and ElK == 124.0 as
given in [5] in order to compare predicted results with existing test data for aluminum
specimens. For the computations simulating rate-sensitivity effects we took" == 0.018 and
f.R == 0.000137Is as given in [16]. These values were determined experimentally for A-K steel
(N =0.22) and should be typical of other metals at room temperature. The constant 41 in
(3.19) was determined by setting the yield strain £y == 0.001 and imposing continuity of (1" at
yield. The material parameters varied in this study were the anisotropic yield function
constants n, m and R in (3.11).



720 E. CHATER and K. W. NEALE

08

06

04-

02

_________ "'01'0 0002/s

--------- elostic -plastic

___L
o 01

w*

_0 ~'0

o 2

0.2 0.3

(a)

04

o

elastic -plastic

, -========= wol'o =002/s

alL._"_...lI__..J.I__..LI__LI_-,-:I_
01 02 03 04 'o/~

(b)

Fig. 4. Dependence of maximum pressure p. and corresponding deflections w~ on diameter-to­
length ratio of tube for both rate-sensitive and time-independent behaviour.

Table I. Influence of tube geometry on stress ratio (1,/(18 according to flow theory

r/£o = 0.1 r/£o = 0.2 r/£o = 0.3 r/£o = 0.4

w/ro a/ae w/ro 0/ae w/ro a/ae wo/ro 0/0e I

0.2 10. 3 0.500 0.1 10- 4 0.500 0.2 10. 3 0.500 0.2 10- 3 0.500

0.1 10- 2 0.500 0.5 10- 3 0.500 0.4 10- 3 0.500 0.9 10- 3 0.500

0.021 0.500 0.021 0.500 0.021 0.504 0.021 0.506

0.061 0.500 0.041 0.500 0.041 0.506 0.041 0" 509

0.101 0.500 0.061 0.500 0.081 0.509 0.061 0.512

0.113 0.500 0.081 0.500 0.101 0.511 0.081 0.516

0.101 0.505 0.121 0.514 0.101 0.520

0.121 0.506 0.131 0.516 0.121 0.526

0.141 0.533

0.144 0.534
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Table 2. Influence of tube geometry on stress ratio ar/as according to deformation theory

rollo = 0.1 rilo = 0.2 rilo = 0.3 rito = 0.4

wo/ro %e wo/ro a/ae wo/ro a/oe wire o/ae

0.2 10-3 0.500 0.1 10-4 0.500 0.2 10-3 0.500 0.2 10- 3 0.500

0.1 10-2 0.500 0.5 10-3 0.500 0.4 10- 3 0.500 0.9 10- 3 0.500

0.021 0.500 0.021 0.500 0.021 0.501 0.021 0.501

0.061 0.500 0.041 0.500 0.041 0.501 0.041 0.502

0.101 0.500 0.061 0.500 0.081 0.503 0.061 0.504

0.113 0.500 0.081 0.500 0.101 0.505 0.081 0.506

0.101 0.502 0.121 0.507 0.101 0.509

0.121 0.503 0.131 0.508 0.121 0.513

0.141 0.517

0.144 0.518

Table 3. Influence of tube geometry on parameter aoh /p(r0 + wo) according to flow theory

rollo
= 0.1 rilo = 0.2 rollo = 0.3 rollo

= 0.4

wiro
0e n

wiro
0e h

wiro
0e h

wiro
0e h

p(ro wo} p(ro+wo) p(ro+Wol p(re+wel

0.2 10-3 1.000 0.1 10- 4 1.000 0.2 10- 3 1.000 0.2 10- 3 1.000

0.1 10- 2 1.000 0.5 10- 3 1.000 0.4 10- 3
1.000 0.9 10-3 1. 000

0.021 1.000 0.021 1.000 0.021 1.000 0.021 1.000

0.061 1.000 0.041 1.000 0.041 1.000 0.041 0.998

0.101 1.000 0.061 1.000 0.081 0.997 0.061 0.996

0.113 1.~OO 0.081 0.998 0.101 0.994 0.081 0.993

0.101 0.997 0.121 0.990 0.101 0.988

0.121 0.995 0.131 0.987 0.121 0.981

0.141 0.973

0.144 0.972

721

Results for time-independent, isotropic behaviour (n = m = 2, R = I) are first shown in
Fig. 2 where the maximum pressure p* and corresponding expansion level wt are given in
terms of the diameter-to-length ratio rollo of the tube. Solid curves here represent the
numerical results obtained from the finite element calculations. The flow theory and
deformation theory curves are indistinguishable in these figures. Squares in Fig. 2 refer to
the experimental data of Banerjee[5], while the open circles correspond to the approximate
formulae (5-6). An excellent agreement between the theoretical predictions and experi­
mental results is obtained, especially for the longer tubes (rol/o~ 0.2). For the shorter tubes
(rol/o =0.4) the predicted maximum pressures are somewhat lower than the test results.
These discrepancies in the short-tube range are most likely due to bending effects, which are
neglected in the analysis. Figure 2 also shows that the approximate analysis ofSection 5 and
finite element calculations give virtually identical predictions for tubes with length-to­
diameter ratios greater than about 10.

A comparison between the finite element results and those obtained assuming a uniform
expansion of the tube is given in Tables 1-4 for isotropic tubes with various geometries.
Rate-independent behaviour is again considered here. According to the long-tube relations
we have <1z/<18 = 112 and
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Table 4. Influence of tube geometry on parameter O'oh/p(ro+ wo) according to deformation theory

rito = 0.1 rolto = 0.2 I rito = 0.3 rito = 0.4
I

~
08 h 08 h (J h

w/ro p(ro+Wo w/ro p{ro+wo) w/ro p(ro+wol" w/ro p{rO+wo )

0.2 10- 3 1.000 0.1 10- 4 1.000 0.2 10- 3 1.000 0.2 10-3 1.000

0.1 10- 2 1.000 0.5
-3 1.000 0.4 10- 3 1.000 0.9 10- 3 1.000

0.021 1.000 0.021 1.000 0.021 1.000 0.021 1.000

0.061 1.000 0.041 1.000 0.041 1.000 0.041 0.998

0.101 1.000 0.061 1.000 0.081 0.997 0.061 0.996

0.113 1.000 0.081 0.998 0.101 0.994 0.081 0.993

1
0 . 101

,
0.101 0.997 0.121 0.990 I 0,988

!
0.121 0.995 0.131 0.987 0.121 0.982

0.141 0.974

0.144 0.973

(6.2)

Values of the stress ratio (Tz/(Tfl at z = 0, obtained with flow theory and deformation theory
are listed in Tables I and 2, respectively, while values ofthe parameter defined by eqn (6.2)
are given in Tables 3 and 4. Again, we observe an almost perfect agreement between the
approximate and exact numerical results for long tubes (ro/lo= 0.1), even for expansions up
to about 12% of the tube radius. The approximate formulae lose accuracy as the tube
becomes shorter because of the increasing importance of end effects. The discrepancies,
however, remain relatively small and are slightly less with deformation theory than with flow
theory.

The last lines in Tables 1-4 correspond to the maximum pressure state. According to
(5.6) this occurs at an expansion wJ' fro = 0.111 which is quite close to the value
(wt fro = 0.113) obtained for the long tube. Furthermore, eqn (5.7) indicates that localized
necking takes place when wo(l)/ro = 0.234. The corresponding result obtained by incorpor­
ating a bifurcation criterion in the deformation theory finite element calculations for
ro/lo= 0.1 is wo(I)/ro= 0.228.

The influence of the anisotropic parameters n, m and R on the maximum pressurep*
is depicted in Fig. 3. Time-independent behaviour is assumed, and long tubes are
considered. Equation (5.6c) gives essentially the same curves as those predicted numerically
with flow theory and deformation theory. Figure 3 shows that the maximum pressure
increases substantiaUy with increasing R and decreasing n. Hewever, as indicated by (5,6b),
the corresponding expansion level wt is independent of the anisotropic parameters; it
depends only on the strain-hardening exponent N.

The influence of material strain-rate sensitivity is shown in Fig. 4. Here the maximum
pressure and corresponding deflection are plotted as a function of the tube diameter-to­
length ratio. The lower curves correspond to time"independent behaviour (K = 0) whilethe
upper curves represent rate-dependent (viscoplastic) response. An expansion rate
wo/ro = 0.02/s was prescribed for the time-dependent calculations. As seen in Fig. 4(a),
rate-sensitivity leads to an increase in the maximum pressure over its time-independent
values. The amount of increase is practically constant over the range of tube geometries
considered. Figure 4(b)indicates that rate-sensitivity has a much less effect on the
deflection wt at maximum pressure and that the effect decreases as the tube length
increases. For long tubes rate-dependence has no noticeable influence on the value· of wJ',
as suggested by (5.9).
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From the present study we can conclude that, for internally-pressurized thin-walled
cylinders, the simplified formulae commonly used to treat experimental data are extremely
accurate if the length-to-diameter ratio is sufficiently large (~/ro:= 5-10). End effects,
however, are not negligible for shorter tubes. For long cylinders eqns (5.5}-{5.9) appear
to be sufficiently accurate for determining the influence of material properties (including
anisotropy) on the pressure-deformation response and instabilities in thin tubes. The
present investigation also indicates that both material anisotropy and strain-rate sensitivity
can significantly influence the maximum pressure which a fixed-end tube can sustain.
However, the corresponding expansion level at the maximum pressure is virtually
insensitive to anisotropy and rate-dependent effects. Finally, we note that no significant
differences are observed between the predictions of flow theory and deformation theory
for the overall pressure-expansion behaviour of the cylinder.
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APPENDIX
The instantaneous compliances in (4.9) for time-independent behaviour are obtained from (3.1) and (3.5) for

flow theory. Equation (3.1) together with the rate form of (3.8) give the deformation theory compliances. For
flow theory we get

(AI)

while deformation theory gives



724 E. CRATER and K. W. NEALE

CA2)

The instantaneous compliances in (4.11) for strain-rate sensitive behaviour are the elastic compliances for flow
theory, and are obtained from (3.18) with deformation theory. Thus, for flow theory we have

(A3)

Deformation theory gives

(A4)


